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Volume Growth

For a graph G, v ∈ V(G) and R ≥ 0 we define

BG(v ,R) = {u ∶ dG(v , u) ≤ R},

where dG(u , v) is the shortest path distance between u and v.

⊚ We are interested in how ∣B(v ,R)∣ grows as a function of R.
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Uniform Volume Growth

We say a graph G has uniform volume growth f (R) if for all v ∈ V(G) and R ≥ 0 we
have

c f (R) ≤ ∣B(v ,R)∣ ≤ C f (R)

for some constants 0 < c ≤ C.

Examples

⊚ The d-dimensional grid has Rd uniform growth, which is polynomial in R.
⊚ The infinite binary tree has 2R uniform growth, which is exponential in R.
⊚ Not all graphs have uniform volume growth.
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Planar Graphs of Uniform Polynomial Growth > 2

Theorem [Babai ’97]
If G is a vertex-transitive planar graph of uniform growth, then the growth is
either linear, quadratic, or exponential.

⊚ It had been conjectured by Kleinberg and Tardos that the assumption on
vertex transitivity is not necessary.

Theorem [Benjamini - Schramm ’01]
For all α ≥ 1, there exists an (infinite) planar graph of uniform growth Rα.
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A Construction by Benjamini-Schramm

Theorem [Benjamini - Schramm ’01]
The sequence of random rooted graphs (Q1 , ρ1), (Q2 , ρ2), . . ., where ρi is chosen
uniformly among the vertices of Qi , has a subsequential limit (Q∞ , ρ).
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Uniform Infinite Planar Triangulation (UIPT)
Defined as the distributional limit of a random uniform triangulation of the
2-sphere [Angel - Schramm ’03].

⊚ Balls of radius R in the UIPT almost surely have volume R4+o(1) [Angel ’03].
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Problem 1 [Benjamini - Papasoglu ’10]
Is there a planar graph of uniform polynomial growth α > 2 in which all
complements of balls are connected?

⊚ The claim trivially holds for α = 2 as the complements of balls in Z2 are all
connected.

Theorem [E - Lee ’21]
For all α > 2, there exists a (unimodular) planar graph of uniform growth Rα in
which the complements of all balls are connected.
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The Random Walk on Z

An (infinite) graph G is recurrent if for (all) v0 ∈ V(G), the random walk starting
from v0 returns to v0 almost surely.

We say G is transient otherwise.
⊚ Recurrence or transience of G does not depend on the choice of v0.
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but has polynomial growth.

⊚ The (infinite) binary tree is transient.

Planar

but has exponential growth.

⊚ Distributional limits of random rooted finite planar graphs are almost surely
recurrent when the degree of the root has an exponential tail
[Benjamini - Schramm ’01, Gurel Gurevich - Nachmias ’12].
○ This includes the Benjamini - Schramm constructions and the UIPT.
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Conjecture 1 [Benjamini ’10]
Planar graphs with uniform polynomial growth are all recurrent.

⊚ Easy to show that it holds for all graphs of growth O(R2).
⊚ Further conjectured to be true for doubling planar graphs.

Theorem [E - Lee ’21]
For all α > 2, there is a transient planar graph of uniform growth Rα.
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Effective Resistance↔ Recurrence

Given G = (V,E) and u , v ∈ V , Reff(u , v) is the energy required to send a unit
electrical flow from from u to v, assuming that every edge in G is a unit resistor.

Theorem [Doyle - Snell ’84]
G = (V,E) is recurrent if and only if Reff(v ,∞) = ∞ for v ∈ V . Where

Reff(v ,∞) = lim
R→∞

Reff (v ,V ∖ B(v ,R)) .
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Conjecture 2 [Lee ’17]
For any planar graph G = (V,E)with uniform polynomial growth we have

Reff (B(v ,R),V ∖ B(v , 10R)) ≳ 1.

⊚ Know: ≳ 1/R [Benjamini - Papasoglu ’10].

Ô⇒

[Bonk - Kleiner ’02]

Theorem [E - Lee ’21]
For α, ε > 0, there is a unimodular random planar graph G = (V,E) of almost sure
uniform growth Rα that further almost surely satisfies

Reff (B(v ,R),V ∖ B(v , 10R)) ≲ε 1/R1−ε .



Conjecture 1 [Benjamini ’10]
Planar graphs with uniform polynomial growth are all recurrent.

⊚ Easy to show that it holds for all graphs of growth O(R2).
⊚ Further conjectured to be true for doubling planar graphs.

Theorem [E - Lee ’21]
For all α > 2, there is a transient planar graph of uniform growth Rα.
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Transience of T∞

Let ρ(S) denote the energy of the
uniform flow from the tiles on the left
of S to the tiles on its right.

Then we
claim for u ∈ T∞

Reff(u ↔∞) ≲
∞

∑
i=1
ρ(Hi

)

≲
∞

∑
i=1
(5/6)i

< ∞.
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The Speed of the Random Walk

Theorem [Lee ’17]
Suppose (G, ρ) is a unimodular random planar graph and G almost surely has
uniform polynomial growth of degree d. Then:

E [dG(X0 ,Xt) ∣ X0 = ρ] ≲ t1/max(2,d−1).

Theorem [E - Lee ’21]
For d ≥ 2 and ε > 0, there is a unimodular random planar graph (G, ρ) that
almost surely has uniform polynomial growth of degree d and

E [dG(X0 ,Xt) ∣ X0 = ρ] ⪰ε t1/(max(2,d−1)+ε).
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Wrap-up

For all α > 2, we can construct a transient planar graph of uniform growth Rα

, and
furthermore a unimodular planar graph of such growth in which

⊚ the complements of all balls are connected,
⊚ the effective resistance across annuli is 1/R1−ε,
⊚ and the speed of the random walk is t1/(max(2,d−1)+ε).
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Open Problems

⊚ Cannon’s Conjecture.
⊚ Can we get rid of the ε in the effective resistance / random walk speed

bound?
○ In particular is there a planar graph of uniform polynomial growth α > 2 in

which the random walk is diffusive?
⊚ Other applications?

○ Sphere-packable generalizations.
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Thank you!
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