On Planar Graphs of Uniform Polynomial Growth

Farzam Ebrahimnejad

joint work with James R. Lee

For a graph $G, v \in V(G)$ and $R \ge 0$ we define

$$B_G(v,R) = \{u: d_G(v,u) \leq R\},\$$

For a graph $G, v \in V(G)$ and $R \ge 0$ we define

$$B_G(v,R) = \{u: d_G(v,u) \le R\},\$$

where $d_G(u, v)$ is the shortest path distance between u and v.

For a graph G, $v \in V(G)$ and $R \ge 0$ we define

 $B_G(v,R) = \{u: d_G(v,u) \leq R\},\$

where $d_G(u, v)$ is the shortest path distance between u and v.

• We are interested in how |B(v, R)| grows as a function of *R*.

|B(v,0)|=1

|B(v,1)|=3

|B(v,R)| = 2R + 1

$$\frac{B(v,R)}{=\Theta(R)} = 2R + 1$$

$$\frac{B(v, R)}{= \Theta(R)}.$$

÷

|B(v,0)| = 1

|B(v,1)|=5

|B(v,2)| = 13

$$|B(v,R)| = 2R^2 - 2R + 1$$

$$|B(v,R)| = 2R^2 - 2R + 1$$

$$\frac{B(v,R)}{|} = 2R^2 - 2R + 1$$
$$= \Theta(R^2).$$

$$\frac{B(v,R)}{|} = 2R^2 - 2R + 1$$
$$= \Theta(R^2).$$

|B(v,R)|

 $|B(v,R)| \le (2R+1)^2$

$(R+1)^2 \le |B(v,R)| \le (2R+1)^2$

|B(v,0)| = 1

|B(v,1)| = 3

|B(v,2)| = 7

 $|B(v, R)| = 2^{R+1} - 1$

 $|B(v, R)| = 2^{R+1} - 1$ = $\Theta(2^R)$.

 $cf(R) \le |B(v,R)| \le Cf(R)$

for some constants $0 < c \leq C$.

 $cf(R) \leq |B(v,R)| \leq Cf(R)$

for some constants $0 < c \leq C$.

Examples

 $cf(R) \le |B(v,R)| \le Cf(R)$

for some constants $0 < c \leq C$.

Examples

• The *d*-dimensional grid has R^d uniform growth, which is polynomial in R.

 $cf(R) \leq |B(v,R)| \leq Cf(R)$

for some constants $0 < c \leq C$.

Examples

- The *d*-dimensional grid has R^d uniform growth, which is polynomial in R.
- The *infinite binary tree* has 2^R uniform growth, which is exponential in *R*.

 $cf(R) \leq |B(v,R)| \leq Cf(R)$

for some constants $0 < c \leq C$.

Examples

- The *d*-dimensional grid has R^d uniform growth, which is polynomial in R.
- The *infinite binary tree* has 2^R uniform growth, which is exponential in *R*.
- Not all graphs have uniform volume growth.

On Planar Graphs of Uniform Polynomial Growth

Farzam Ebrahimnejad

joint work with James R. Lee

Theorem [Babai '97]

If *G* is a *vertex-transitive* planar graph of uniform growth, then the growth is either linear, quadratic, or exponential.

Theorem [Babai '97]

If *G* is a *vertex-transitive* planar graph of uniform growth, then the growth is either linear, quadratic, or exponential.

• It had been conjectured by Kleinberg and Tardos that the assumption on vertex transitivity is not necessary.
Theorem [Babai '97]

If *G* is a *vertex-transitive* planar graph of uniform growth, then the growth is either linear, quadratic, or exponential.

• It had been conjectured by Kleinberg and Tardos that the assumption on vertex transitivity is not necessary.

Theorem [Benjamini - Schramm '01]

For all $\alpha \ge 1$, there exists an (infinite) planar graph of uniform growth R^{α} .

Theorem [Benjamini - Schramm '01]

The sequence of random rooted graphs $(Q_1, \rho_1), (Q_2, \rho_2), \ldots$, where ρ_i is chosen uniformly among the vertices of Q_i , has a subsequential limit (Q_{∞}, ρ) .

Defined as the distributional limit of a random uniform triangulation of the 2-sphere [Angel - Schramm '03].

Defined as the distributional limit of a random uniform triangulation of the 2-sphere [Angel - Schramm '03].

Drawn by Igor Kortchemski

Defined as the distributional limit of a random uniform triangulation of the 2-sphere [Angel - Schramm '03].

• Balls of radius *R* in the UIPT almost surely have volume $R^{4+o(1)}$ [Angel '03].

Drawn by Igor Kortchemski

Drawn by Igor Kortchemski

Drawn by Igor Kortchemski

Is there a planar graph of uniform polynomial growth $\alpha > 2$ in which all complements of balls are connected?

Is there a planar graph of uniform polynomial growth $\alpha > 2$ in which all complements of balls are connected?

Is there a planar graph of uniform polynomial growth $\alpha > 2$ in which all complements of balls are connected? *that doesn't look like the UIPT?*

Is there a planar graph of uniform polynomial growth $\alpha > 2$ in which all complements of balls are connected? *that doesn't look like the UIPT*?

◎ The claim trivially holds for $\alpha = 2$ as the complements of balls in \mathbb{Z}^2 are all connected.

Is there a planar graph of uniform polynomial growth $\alpha > 2$ in which all complements of balls are connected? *that doesn't look like the UIPT*?

◎ The claim trivially holds for $\alpha = 2$ as the complements of balls in \mathbb{Z}^2 are all connected.

Is there a planar graph of uniform polynomial growth $\alpha > 2$ in which all complements of balls are connected? *that doesn't look like the UIPT*?

• The claim trivially holds for $\alpha = 2$ as the complements of balls in \mathbb{Z}^2 are all connected.

Theorem [E - Lee '21]

For all $\alpha > 2$, there exists a (unimodular) planar graph of uniform growth R^{α} in which the complements of all balls are connected.

Outline

✓ Planar graphs of uniform polynomial growth > 2.

- - ✓ Their "structure".

✓ Planar graphs of uniform polynomial growth > 2.

✓ Their "structure".

Up next . . .

- ✓ Planar graphs of uniform polynomial growth > 2.
 - ✓ Their "structure".
 - Up next . . .
 - □ Random walks.
 - □ Effective resistances.
 - \Box Our construction(s).

Random Walks

Recurrence vs. Transience

An (infinite) graph *G* is recurrent if for (all) $v_0 \in V(G)$, the random walk starting from v_0 returns to v_0 almost surely.

• Recurrence or transience of *G* does not depend on the choice of v_0 .

• Recurrence or transience of *G* does not depend on the choice of v_0 .

 \odot Recurrence or transience of *G* does not depend on the choice of v_0 .

 \odot Recurrence or transience of *G* does not depend on the choice of v_0 .

Examples

 \odot Z is *recurrent* [Pólya 1921].

 \odot Recurrence or transience of *G* does not depend on the choice of v_0 .

- る ℤ is *recurrent* [Pólya 1921].
- \mathbb{Z}^2 is recurrent [Pólya 1921].

 \odot Recurrence or transience of *G* does not depend on the choice of v_0 .

- る ℤ is *recurrent* [Pólya 1921].
- \mathbb{Z}^2 is recurrent [Pólya 1921].
- $\odot \mathbb{Z}^3$ is *transient* [Pólya 1921]!

 \odot Recurrence or transience of *G* does not depend on the choice of v_0 .

- る ℤ is *recurrent* [Pólya 1921].
- $\odot \mathbb{Z}^2$ is *recurrent* [Pólya 1921].
- ◎ \mathbb{Z}^3 is *transient* [Pólya 1921]! **Not planar**

 \odot Recurrence or transience of *G* does not depend on the choice of v_0 .

- \odot Z is *recurrent* [Pólya 1921].
- $\odot \mathbb{Z}^2$ is *recurrent* [Pólya 1921].
- ◎ \mathbb{Z}^3 is *transient* [Pólya 1921]! **Not planar**
- The (infinite) binary tree is *transient*.

 \odot Recurrence or transience of *G* does not depend on the choice of v_0 .

- る ℤ is *recurrent* [Pólya 1921].
- $\odot \mathbb{Z}^2$ is *recurrent* [Pólya 1921].
- ◎ \mathbb{Z}^3 is *transient* [Pólya 1921]! **Not planar**
- ◎ The (infinite) binary tree is *transient*. **Planar**

• Recurrence or transience of *G* does not depend on the choice of v_0 .

- る ℤ is *recurrent* [Pólya 1921].
- $\odot \mathbb{Z}^2$ is *recurrent* [Pólya 1921].
- ◎ \mathbb{Z}^3 is *transient* [Pólya 1921]! **Not planar**
- The (infinite) binary tree is *transient*. **Planar** but has **exponential growth**.

• Recurrence or transience of *G* does not depend on the choice of v_0 .

- る ℤ is *recurrent* [Pólya 1921].
- $\odot \mathbb{Z}^2$ is recurrent [Pólya 1921].
- \mathbb{Z}^3 is *transient* [Pólya 1921]! Not planar but has polynomial growth.
- The (infinite) binary tree is *transient*. **Planar** but has **exponential growth**.

• Recurrence or transience of *G* does not depend on the choice of v_0 .

- る ℤ is *recurrent* [Pólya 1921].
- \mathbb{Z}^2 is recurrent [Pólya 1921].
- \mathbb{Z}^3 is *transient* [Pólya 1921]! Not planar but has polynomial growth.
- The (infinite) binary tree is *transient*. **Planar** but has **exponential growth**.
- Distributional limits of random rooted finite planar graphs are almost surely *recurrent* when the degree of the root has an exponential tail
 [Benjamini Schramm '01, Gurel Gurevich Nachmias '12].

• Recurrence or transience of *G* does not depend on the choice of v_0 .

- \odot Z is *recurrent* [Pólya 1921].
- \mathbb{Z}^2 is recurrent [Pólya 1921].
- \mathbb{Z}^3 is *transient* [Pólya 1921]! Not planar but has polynomial growth.
- The (infinite) binary tree is *transient*. **Planar** but has **exponential growth**.
- Distributional limits of random rooted finite planar graphs are almost surely *recurrent* when the degree of the root has an exponential tail
 [Benjamini Schramm '01, Gurel Gurevich Nachmias '12].
 - This includes the Benjamini Schramm constructions and the UIPT.

Conjecture 1 [Benjamini '10]

Planar graphs with uniform polynomial growth are all *recurrent*.

Conjecture 1 [Benjamini '10]

Planar graphs with uniform polynomial growth are all *recurrent*.

• Easy to show that it holds for *all* graphs of growth $O(R^2)$.

Conjecture 1 [Benjamini '10]

Planar graphs with uniform polynomial growth are all *recurrent*.

- Easy to show that it holds for *all* graphs of growth $O(R^2)$.
- ◎ Further conjectured to be true for *doubling* planar graphs.

Theorem [Doyle - Snell '84]

G = (V, E) is recurrent if and only if $R_{\text{eff}}(v, \infty) = \infty$ for $v \in V$. Where

$$R_{\rm eff}(v,\infty) = \lim_{R\to\infty} R_{\rm eff}(v,V \setminus B(v,R)).$$

How to Bound the Effective Resistance?

$$R_{\text{eff}}(u,v) \gtrsim \frac{1}{|S_1|} + \frac{1}{|S_2|} + \dots + \frac{1}{|S_n|}$$

$$R_{\rm eff}(u,v) \gtrsim \frac{1}{|S_1|} + \frac{1}{|S_2|} + \dots + \frac{1}{|S_n|}$$

$$R_{\text{eff}}(u,v) \gtrsim \frac{1}{|S_1|} + \frac{1}{|S_2|} + \dots + \frac{1}{|S_n|}$$

Theorem [Benjamini - Papasoglu '10]

$$R_{\text{eff}}(u,v) \gtrsim \frac{1}{|S_1|} + \frac{1}{|S_2|} + \dots + \frac{1}{|S_n|}$$

Theorem [Benjamini - Papasoglu '10]

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$$

$$R_{\text{eff}}(u,v) \gtrsim \frac{1}{|S_1|} + \frac{1}{|S_2|} + \dots + \frac{1}{|S_n|}$$

Theorem [Benjamini - Papasoglu '10]

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots < \infty$$

$$R_{\text{eff}}(u,v) \gtrsim \frac{1}{|S_1|} + \frac{1}{|S_2|} + \dots + \frac{1}{|S_n|}$$

Theorem [Benjamini - Papasoglu '10]

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots < \infty$$

Linear-sized Separators in \mathbb{Z}^2

:

÷

. . .

Linear-sized Separators in \mathbb{Z}^2

÷

. . .

:

÷

:

. . .

:

÷

. . .

:

:

. . .

$$R_{\rm eff}(v,\infty) \gtrsim \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

$$R_{\rm eff}(v,\infty) \gtrsim \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$
$$= \infty$$

$$R_{\rm eff}(v,\infty) \ge \sum_{k=1}^{\infty} R_{\rm eff}\left(B(v,2^k), V \smallsetminus B(v,2^{k+1})\right)$$

$$R_{\rm eff}(v,\infty) \ge \sum_{k=1}^{\infty} R_{\rm eff}\left(B(v,2^k), V \smallsetminus B(v,2^{k+1})\right)$$

$$R_{\text{eff}}(v,\infty) \ge \sum_{k=1}^{\infty} R_{\text{eff}}\left(B(v,2^k), V \setminus B(v,2^{k+1})\right)$$
$$\stackrel{?}{\ge} \sum_{k=1}^{\infty} \Omega(1)$$

$$R_{\text{eff}}(v,\infty) \ge \sum_{k=1}^{\infty} R_{\text{eff}}\left(B(v,2^{k}), V \smallsetminus B(v,2^{k+1})\right)$$
$$\stackrel{?}{\ge} \sum_{k=1}^{\infty} \Omega(1)$$
$$\cdot = \infty$$

For any planar graph G = (V, E) with uniform polynomial growth we have

 $R_{\rm eff}\left(B(v,R),V\smallsetminus B(v,10R)\right)\gtrsim 1.$

For any planar graph G = (V, E) with uniform polynomial growth we have

 $R_{\rm eff}\left(B(v,R),V\smallsetminus B(v,10R)\right)\gtrsim 1.$

⊚ Know: $\gtrsim 1/R$ [Benjamini - Papasoglu '10].

For any planar graph G = (V, E) with uniform polynomial growth we have

 $R_{\rm eff}\left(B(v,R),V\smallsetminus B(v,10R)\right)\gtrsim 1.$

⊚ Know: $\gtrsim 1/R$ [Benjamini - Papasoglu '10].

Cannon's Conjecture ['94]

Let Γ be a Gromov hyperbolic group whose visual boundary $\partial_{\infty}\Gamma$ is homeomorphic to \mathbb{S}^2 . Then $\partial_{\infty}\Gamma$ is *quasisymmetric* to \mathbb{S}^2 .

For any planar graph G = (V, E) with uniform polynomial growth we have

 $R_{\rm eff}\left(B(v,R),V\smallsetminus B(v,10R)\right)\gtrsim 1.$

⊚ Know: $\gtrsim 1/R$ [Benjamini - Papasoglu '10].

Cannon's Conjecture ['94]

Let Γ be a Gromov hyperbolic group whose visual boundary $\partial_{\infty}\Gamma$ is homeomorphic to \mathbb{S}^2 . Then $\partial_{\infty}\Gamma$ is *quasisymmetric* to \mathbb{S}^2 .

Cannon's Conjecture

Source: Cannon - Floyd - Parry '01

For any planar graph G = (V, E) with uniform polynomial growth we have

 $R_{\rm eff}\left(B(v,R),V\smallsetminus B(v,10R)\right)\gtrsim 1.$

⊚ Know: $\gtrsim 1/R$ [Benjamini - Papasoglu '10].

Cannon's Conjecture ['94]

Let Γ be a Gromov hyperbolic group whose visual boundary $\partial_{\infty}\Gamma$ is homeomorphic to \mathbb{S}^2 . Then $\partial_{\infty}\Gamma$ is *quasisymmetric* to \mathbb{S}^2 .

For any planar graph G = (V, E) with uniform polynomial growth we have

 $R_{\rm eff}\left(B(v,R),V\smallsetminus B(v,10R)\right)\gtrsim 1.$

◎ Know: $\gtrsim 1/R$ [Benjamini - Papasoglu '10].

For any planar graph G = (V, E) with uniform polynomial growth we have

 $R_{\rm eff}\left(B(v,R),V\smallsetminus B(v,10R)\right)\gtrsim 1.$

◎ Know: $\gtrsim 1/R$ [Benjamini - Papasoglu '10].

For any planar graph G = (V, E) with uniform polynomial growth we have

 $R_{\rm eff}\left(B(v,R),V\smallsetminus B(v,10R)\right)\gtrsim 1.$

⊚ Know: $\gtrsim 1/R$ [Benjamini - Papasoglu '10].

Theorem [E - Lee '21]

For α , $\epsilon > 0$, there is a unimodular random planar graph G = (V, E) of almost sure uniform growth R^{α} that further almost surely satisfies

 $R_{\text{eff}}(B(v,R), V \smallsetminus B(v,10R)) \lesssim_{\epsilon} 1/R^{1-\epsilon}.$

Conjecture 1 [Benjamini '10]

Planar graphs with uniform polynomial growth are all *recurrent*.

- Easy to show that it holds for *all* graphs of growth $O(R^2)$.
- Further conjectured to be true for *doubling* planar graphs.

Conjecture 1 [Benjamini '10]

Planar graphs with uniform polynomial growth are all *recurrent*.

- Easy to show that it holds for *all* graphs of growth $O(R^2)$.
- Further conjectured to be true for *doubling* planar graphs.

Conjecture 1 [Benjamini '10]

Planar graphs with uniform polynomial growth are all *recurrent*.

- Easy to show that it holds for *all* graphs of growth $O(R^2)$.
- Further conjectured to be true for *doubling* planar graphs.

Theorem [E - Lee '21]

For all $\alpha > 2$, there is a *transient* planar graph of uniform growth R^{α} .

The Construction(s)

◎ Obesrvation: $A \circ (B \circ C) = (A \circ B) \circ C$.

 $\{\mathbf{G}^n:n\geq 1\}$

G =

 $\{\mathbf{G}^n:n\geq 1\}$

G =

- 3 ——

 $\{\mathbf{G}^n:n\ge 1\}$

$\{\mathbf{G}^n:n\geq 1\}$

G² =

$\{\mathbf{G}^n:n\geq 1\}$

 $\{\mathbf{H}^n:n\geq 1\}$

 $\{\mathbf{H}^n:n\geq 1\}$

H² =

 $\{\mathbf{H}^n:n\geq 1\}$

$$|B_{\mathbf{H}^n}(v, 3^{n+1})| = 12^n$$

Lemma: $|B_{\mathbf{H}^n}(v, R)| \approx R^{\log_3 12}$

◎
$$|B_{\mathbf{H}^n}(v, 3^{n+1})| = 12^n$$

∘ $|\mathbf{H}^n| = 12^n$

- ◎ $|B_{\mathbf{H}^n}(v, 3^{n+1})| = 12^n$ ∘ $|\mathbf{H}^n| = 12^n$
 - $3^n \leq \operatorname{diam}(\mathbf{H}^n) \leq 3^{n+1}$

Lemma: $|B_{\mathbf{H}^n}(v, R)| \approx R^{\log_3 12}$

$$\begin{array}{c} H^{n-1} \\ H^{n-1} \\ H^{n-1} \end{array} \begin{array}{c} H^{n-1} \\ H^{n-1} \\ H^{n-1} \\ H^{n-1} \end{array} \begin{array}{c} H^{n-1} \\ H^{n-1} \\ H^{n-1} \end{array} \begin{array}{c} H^{n-1} \\ H^{n-1} \\ H^{n-1} \end{array} \end{array}$$

- ◎ $|B_{\mathbf{H}^n}(v, 3^{n+1})| = 12^n$ ∘ $|\mathbf{H}^n| = 12^n$
 - $3^n \leq \operatorname{diam}(\mathbf{H}^n) \leq 3^{n+1}$

◎
$$|B_{\mathbf{H}^n}(v, 3^{n+1})| = 12^n$$

∘ $|\mathbf{H}^n| = 12^n$

•
$$3^n \leq \operatorname{diam}(\mathbf{H}^n) \leq 3^{n+1}$$

Lemma: $|B_{\mathbf{H}^n}(v, R)| \approx R^{\log_3 12}$

◎ $|B_{\mathbf{H}^n}(v, 3^{n+1})| = 12^n$ ∘ $|\mathbf{H}^n| = 12^n$

•
$$3^n \leq \operatorname{diam}(\mathbf{H}^n) \leq 3^{n+1}$$

- ◎ $|B_{\mathbf{H}^n}(v, 3^{n+1})| = 12^n$ ∘ $|\mathbf{H}^n| = 12^n$
 - $3^n \leq \operatorname{diam}(\mathbf{H}^n) \leq 3^{n+1}$

◎ $|B_{\mathbf{H}^n}(v, 3^{n+1})| = 12^n$ • $|\mathbf{H}^n| = 12^n$ • $3^n \le \operatorname{diam}(\mathbf{H}^n) \le 3^{n+1}$

$$\odot B_{\mathbf{H}^n}(v, 3^k) \approx \mathbf{H}^k$$

- $\odot |B_{\mathbf{H}^n}(v, 3^{n+1})| = 12^n$
 - $|\mathbf{H}^n| = 12^n$ • $3^n \le \operatorname{diam}(\mathbf{H}^n) \le 3^{n+1}$

•
$$B_{\mathbf{H}^n}(v, \mathbf{3}^k) \approx \mathbf{H}^k$$

• $\mathbf{H}^n = \mathbf{H}^{n-k} \circ \mathbf{H}^k$

•
$$B_{\mathbf{H}^n}(v, \mathbf{3}^k) \approx \mathbf{H}^k$$

• $\mathbf{H}^n = \mathbf{H}^{n-k} \circ \mathbf{H}^k$

•
$$B_{\mathbf{H}^n}(v, \mathbf{3}^k) \approx \mathbf{H}^k$$

• $\mathbf{H}^n = \mathbf{H}^{n-k} \circ \mathbf{H}^k$

•
$$B_{\mathbf{H}^n}(v, \mathbf{3}^k) \approx \mathbf{H}^k$$

• $\mathbf{H}^n = \mathbf{H}^{n-k} \circ \mathbf{H}^k$

- $|B_{\mathbf{H}^n}(v, 3^{n+1})| = 12^n$ $|\mathbf{H}^n| = 12^n$
 - $3^n \leq \operatorname{diam}(\mathbf{H}^n) \leq 3^{n+1}$

•
$$B_{\mathbf{H}^n}(v, \mathbf{3}^k) \approx \mathbf{H}^k$$

• $\mathbf{H}^n = \mathbf{H}^{n-k} \circ \mathbf{H}^k$

•
$$B_{\mathbf{H}^n}(v, \mathbf{3}^k) \approx \mathbf{H}^k$$

• $\mathbf{H}^n = \mathbf{H}^{n-k} \circ \mathbf{H}^k$

Lemma: $|B_{\mathbf{H}^n}(v, R)| \asymp \underline{R^{\log_3 12}}$

•
$$B_{\mathbf{H}^n}(v, 3^k) \approx \mathbf{H}^k$$

• $\mathbf{H}^n = \mathbf{H}^{n-k} \circ \mathbf{H}^k$

•
$$B_{\mathbf{H}^n}(v, 3^k) \approx \mathbf{H}^k$$

• $\mathbf{H}^n = \mathbf{H}^{n-k} \circ \mathbf{H}^k$

•
$$B_{\mathbf{H}^n}(v, \mathbf{3}^k) \approx \mathbf{H}^k$$

• $\mathbf{H}^n = \mathbf{H}^{n-k} \circ \mathbf{H}^k$

Lemma: $|B_{\mathbf{H}^n}(v, R)| \approx R^{\log_3 12}$

- ◎ $|B_{\mathbf{H}^n}(v, 3^{n+1})| = 12^n$ ∘ $|\mathbf{H}^n| = 12^n$
 - $3^n \leq \operatorname{diam}(\mathbf{H}^n) \leq 3^{n+1}$

•
$$\max_S \deg_{\mathbf{H}^n}(S) \le 6$$

- ◎ $|B_{\mathbf{H}^n}(v, 3^{n+1})| = 12^n$ ∘ $|\mathbf{H}^n| = 12^n$
 - $3^n \leq \operatorname{diam}(\mathbf{H}^n) \leq 3^{n+1}$
- ◎ $B_{\mathbf{H}^n}(v, 3^k) \approx \mathbf{H}^k$ • $\mathbf{H}^n = \mathbf{H}^{n-k} \circ \mathbf{H}^k$ • $\max_S \deg_{\mathbf{H}^n}(S) \le 6$

- $|B_{\mathbf{H}^n}(v, 3^{n+1})| = 12^n$
 - $|\mathbf{H}^n| = 12^n$
 - $3^n \leq \operatorname{diam}(\mathbf{H}^n) \leq 3^{n+1}$

$$\odot B_{\mathbf{H}^n}(v, \mathbf{3}^k) \approx \mathbf{H}^k$$

• $\mathbf{H}^n = \mathbf{H}^{n-k} \circ \mathbf{H}^k$

•
$$\max_{S} \deg_{\mathbf{H}^{n}}(S) \leq 6$$

Lemma: $|B_{\mathbf{H}^n}(v, R)| \times \underline{R^{\log_3 12}}$

- ◎ $|B_{\mathbf{H}^n}(v, 3^{n+1})| = 12^n$ ∘ $|\mathbf{H}^n| = 12^n$
 - $3^n \leq \operatorname{diam}(\mathbf{H}^n) \leq 3^{n+1}$

$$\odot B_{\mathbf{H}^n}(v, 3^k) \approx \mathbf{H}^k$$

• $\mathbf{H}^n = \mathbf{H}^{n-k} \circ \mathbf{H}^k$

•
$$\max_{S} \deg_{\mathbf{H}^{n}}(S) \leq 6$$

The Transient Construction T_{∞}

The Transient Construction T_{∞}

The Transient Construction T_{∞}

Let $\rho(\mathbf{S})$ denote the energy of the uniform flow from the tiles on the left of **S** to the tiles on its right.

Let $\rho(\mathbf{S})$ denote the energy of the uniform flow from the tiles on the left of **S** to the tiles on its right. Then we claim for $u \in \mathbf{T}_{\infty}$
$$R_{\rm eff}(u \leftrightarrow \infty) \lesssim \sum_{i=1}^{\infty} \rho(\mathbf{H}^i)$$

$$R_{\text{eff}}(u \leftrightarrow \infty) \lesssim \sum_{i=1}^{\infty} \rho(\mathbf{H}^{i})$$
$$\lesssim \sum_{i=1}^{\infty} (5/6)^{i}$$

$$\begin{split} R_{\mathrm{eff}}(u \leftrightarrow \infty) &\lesssim \sum_{i=1}^{\infty} \rho(\mathbf{H}^{i}) \\ &\lesssim \sum_{i=1}^{\infty} (5/6)^{i} \end{split}$$

$$\begin{aligned} R_{\text{eff}}(u \leftrightarrow \infty) &\lesssim \sum_{i=1}^{\infty} \rho(\mathbf{H}^{i}) \\ &\lesssim \sum_{i=1}^{\infty} (5/6)^{i} \end{aligned}$$

$$\begin{aligned} R_{\text{eff}}(u \leftrightarrow \infty) &\lesssim \sum_{i=1}^{\infty} \rho(\mathbf{H}^{i}) \\ &\lesssim \sum_{i=1}^{\infty} (5/6)^{i} \end{aligned}$$

$$\begin{aligned} R_{\text{eff}}(u \leftrightarrow \infty) &\lesssim \sum_{i=1}^{\infty} \rho(\mathbf{H}^{i}) \\ &\lesssim \sum_{i=1}^{\infty} (5/6)^{i} \end{aligned}$$

$$\begin{aligned} R_{\text{eff}}(u \leftrightarrow \infty) &\lesssim \sum_{i=1}^{\infty} \rho(\mathbf{H}^{i}) \\ &\lesssim \sum_{i=1}^{\infty} (5/6)^{i} \end{aligned}$$

Generalizations

Theorem [Lee '17]

Suppose (G, ρ) is a unimodular random planar graph and *G* almost surely has uniform polynomial growth of degree *d*. Then:

$$\mathbb{E}\left[d_G(X_0, X_t) \mid X_0 = \rho\right] \lesssim t^{1/\max(2, d-1)}.$$

Theorem [Lee '17]

Suppose (G, ρ) is a unimodular random planar graph and *G* almost surely has uniform polynomial growth of degree *d*. Then:

$$\mathbb{E}\left[d_G(X_0, X_t) \mid X_0 = \rho\right] \lesssim t^{1/\max(2, d-1)}.$$

Theorem [E - Lee '21]

For $d \ge 2$ and $\epsilon > 0$, there is a unimodular random planar graph (G, ρ) that almost surely has uniform polynomial growth of degree d and

$$\mathbb{E}\left[d_G(X_0, X_t) \mid X_0 = \rho\right] \succeq_{\epsilon} t^{1/(\max(2, d-1) + \epsilon)}.$$

For all $\alpha > 2$, we can construct a transient planar graph of uniform growth R^{α}

the complements of all balls are connected,

- the complements of all balls are connected,
- ◎ the effective resistance across annuli is $1/R^{1-\epsilon}$,

- the complements of all balls are connected,
- ◎ the effective resistance across annuli is $1/R^{1-\epsilon}$,
- and the speed of the random walk is $t^{1/(\max(2,d-1)+\epsilon)}$.

◎ Cannon's Conjecture.

- ◎ Cannon's Conjecture.
- $\odot\,$ Can we get rid of the ϵ in the effective resistance / random walk speed bound?

- ◎ Cannon's Conjecture.
- $\odot\,$ Can we get rid of the ϵ in the effective resistance / random walk speed bound?

- Cannon's Conjecture.
- \odot Can we get rid of the ϵ in the effective resistance / random walk speed bound?
 - In particular is there a planar graph of uniform polynomial growth $\alpha > 2$ in which the random walk is diffusive?

- Cannon's Conjecture.
- \odot Can we get rid of the ϵ in the effective resistance / random walk speed bound?
 - In particular is there a planar graph of uniform polynomial growth *α* > 2 in which the random walk is diffusive?
- Other applications?

- Cannon's Conjecture.
- \odot Can we get rid of the ϵ in the effective resistance / random walk speed bound?
 - In particular is there a planar graph of uniform polynomial growth *α* > 2 in which the random walk is diffusive?
- Other applications?
 - Sphere-packable generalizations.

Thank you!