On Planar Graphs of Uniform Polynomial Growth

Farzam Ebrahimnejad
joint work with James R. Lee

Planarity

Planarity

Planarity

Volume Growth

For a graph $G, v \in V(G)$ and $R \geq 0$ we define

$$
B_{G}(v, R)=\left\{u: d_{G}(v, u) \leq R\right\},
$$

Volume Growth

For a graph $G, v \in V(G)$ and $R \geq 0$ we define

$$
B_{G}(v, R)=\left\{u: d_{G}(v, u) \leq R\right\},
$$

where $d_{G}(u, v)$ is the shortest path distance between u and v.

Volume Growth

For a graph $G, v \in V(G)$ and $R \geq 0$ we define

$$
B_{G}(v, R)=\left\{u: d_{G}(v, u) \leq R\right\},
$$

where $d_{G}(u, v)$ is the shortest path distance between u and v.
© We are interested in how $|B(v, R)|$ grows as a function of R.

Volume Growth in \mathbb{Z}

$|B(v, 0)|=1$

Volume Growth in \mathbb{Z}

$$
|B(v, 1)|=3
$$

Volume Growth in \mathbb{Z}

$|B(v, R)|=2 R+1$

Volume Growth in \mathbb{Z}

$$
\begin{aligned}
|B(v, R)| & =2 R+1 \\
& =\Theta(R) .
\end{aligned}
$$

Volume Growth in \mathbb{Z}

$$
\begin{aligned}
|B(v, R)| & =2 R+1 \\
& =\Theta(R) .
\end{aligned}
$$

Volume Growth in \mathbb{Z}^{2}

$$
|B(v, 0)|=1
$$

Volume Growth in \mathbb{Z}^{2}

$$
|B(v, 1)|=5
$$

Volume Growth in \mathbb{Z}^{2}

$$
|B(v, 2)|=13
$$

Volume Growth in \mathbb{Z}^{2}

$$
|B(v, R)|=2 R^{2}-2 R+1
$$

Volume Growth in \mathbb{Z}^{2}

$$
|B(v, R)|=2 R^{2}-2 R+1
$$

Volume Growth in \mathbb{Z}^{2}

$$
\begin{aligned}
|B(v, R)| & =2 R^{2}-2 R+1 \\
& =\Theta\left(R^{2}\right) .
\end{aligned}
$$

Volume Growth in \mathbb{Z}^{2}

$$
\begin{aligned}
|B(v, R)| & =2 R^{2}-2 R+1 \\
& =\Theta\left(R^{2}\right) .
\end{aligned}
$$

Volume Growth in \mathbb{Z}^{2}

$$
|B(v, R)|
$$

Volume Growth in \mathbb{Z}^{2}

$$
|B(v, R)| \leq(2 R+1)^{2}
$$

Volume Growth in \mathbb{Z}^{2}

$$
(R+1)^{2} \leq|B(v, R)| \leq(2 R+1)^{2}
$$

Volume Growth in the Binary Tree

Volume Growth in the Binary Tree

$$
|B(v, 0)|=1
$$

Volume Growth in the Binary Tree

$$
|B(v, 1)|=3
$$

Volume Growth in the Binary Tree

$$
|B(v, 2)|=7
$$

$$
|B(v, R)|=2^{R+1}-1
$$

$$
\begin{aligned}
|B(v, R)| & =2^{R+1}-1 \\
& =\Theta\left(2^{R}\right)
\end{aligned}
$$

Uniform Volume Growth

We say a graph G has uniform volume growth $f(R)$ if for all $v \in V(G)$ and $R \geq 0$ we have

$$
c f(R) \leq|B(v, R)| \leq C f(R)
$$

for some constants $0<c \leq C$.

Uniform Volume Growth

We say a graph G has uniform volume growth $f(R)$ if for all $v \in V(G)$ and $R \geq 0$ we have

$$
c f(R) \leq|B(v, R)| \leq C f(R)
$$

for some constants $0<c \leq C$.

Examples

Uniform Volume Growth

We say a graph G has uniform volume growth $f(R)$ if for all $v \in V(G)$ and $R \geq 0$ we have

$$
c f(R) \leq|B(v, R)| \leq C f(R)
$$

for some constants $0<c \leq C$.

Examples

© The d-dimensional grid has R^{d} uniform growth, which is polynomial in R.

Uniform Volume Growth

We say a graph G has uniform volume growth $f(R)$ if for all $v \in V(G)$ and $R \geq 0$ we have

$$
c f(R) \leq|B(v, R)| \leq C f(R)
$$

for some constants $0<c \leq C$.

Examples

© The d-dimensional grid has R^{d} uniform growth, which is polynomial in R.
© The infinite binary tree has 2^{R} uniform growth, which is exponential in R.

Uniform Volume Growth

We say a graph G has uniform volume growth $f(R)$ if for all $v \in V(G)$ and $R \geq 0$ we have

$$
c f(R) \leq|B(v, R)| \leq C f(R)
$$

for some constants $0<c \leq C$.

Examples

© The d-dimensional grid has R^{d} uniform growth, which is polynomial in R.
© The infinite binary tree has 2^{R} uniform growth, which is exponential in R.
© Not all graphs have uniform volume growth.

On Planar Graphs of Uniform Polynomial Growth

Farzam Ebrahimnejad
joint work with James R. Lee

Planar Graphs of Uniform Polynomial Growth > 2

Theorem [Babai '97]

If G is a vertex-transitive planar graph of uniform growth, then the growth is either linear, quadratic, or exponential.

Planar Graphs of Uniform Polynomial Growth > 2

Theorem [Babai '97]

If G is a vertex-transitive planar graph of uniform growth, then the growth is either linear, quadratic, or exponential.
© It had been conjectured by Kleinberg and Tardos that the assumption on vertex transitivity is not necessary.

Planar Graphs of Uniform Polynomial Growth > 2

Theorem [Babai '97]

If G is a vertex-transitive planar graph of uniform growth, then the growth is either linear, quadratic, or exponential.
© It had been conjectured by Kleinberg and Tardos that the assumption on vertex transitivity is not necessary.

Theorem [Benjamini - Schramm '01]

For all $\alpha \geq 1$, there exists an (infinite) planar graph of uniform growth R^{α}.

A Construction by Benjamini-Schramm

A Construction by Benjamini-Schramm

Theorem [Benjamini - Schramm '01]

The sequence of random rooted graphs $\left(Q_{1}, \rho_{1}\right),\left(Q_{2}, \rho_{2}\right), \ldots$, where ρ_{i} is chosen uniformly among the vertices of Q_{i}, has a subsequential limit $\left(Q_{\infty}, \rho\right)$.

Uniform Infinite Planar Triangulation (UIPT)

Defined as the distributional limit of a random uniform triangulation of the 2-sphere [Angel-Schramm '03].

Uniform Infinite Planar Triangulation (UIPT)

Defined as the distributional limit of a random uniform triangulation of the 2-sphere [Angel - Schramm '03].

Drawn by Igor Kortchemski

Uniform Infinite Planar Triangulation (UIPT)

Defined as the distributional limit of a random uniform triangulation of the 2-sphere [Angel - Schramm '03].
© Balls of radius R in the UIPT almost surely have volume $R^{4+o(1)}$ [Angel 'o3].

Drawn by Igor Kortchemski

Uniform Infinite Planar Triangulation (UIPT)

Drawn by Igor Kortchemski

Uniform Infinite Planar Triangulation (UIPT)

Drawn by Igor Kortchemski

Problem 1 [Benjamini - Papasoglu '10]

Is there a planar graph of uniform polynomial growth $\alpha>2$ in which all complements of balls are connected?

Problem 1 [Benjamini - Papasoglu '10]

Is there a planar graph of uniform polynomial growth $\alpha>2$ in which all complements of balls are connected?

Problem 1 [Benjamini - Papasoglu '10]

Is there a planar graph of uniform polynomial growth $\alpha>2$ in which all complements of balls are connected? that doesn't look like the UIPT?

Problem 1 [Benjamini - Papasoglu '10]

Is there a planar graph of uniform polynomial growth $\alpha>2$ in which all complements of balls are connected? that doesn't look like the UIPT?
© The claim trivially holds for $\alpha=2$ as the complements of balls in \mathbb{Z}^{2} are all connected.

Problem 1 [Benjamini - Papasoglu '10]

Is there a planar graph of uniform polynomial growth $\alpha>2$ in which all complements of balls are connected? that doesn't look like the UIPT?
© The claim trivially holds for $\alpha=2$ as the complements of balls in \mathbb{Z}^{2} are all connected.

Problem 1 [Benjamini - Papasoglu '10]

Is there a planar graph of uniform polynomial growth $\alpha>2$ in which all complements of balls are connected? that doesn't look like the UIPT?
© The claim trivially holds for $\alpha=2$ as the complements of balls in \mathbb{Z}^{2} are all connected.

Theorem [E - Lee '21]

For all $\alpha>2$, there exists a (unimodular) planar graph of uniform growth R^{α} in which the complements of all balls are connected.

Sneak Peek

Sneak Peek

\author{

Outline

}

I

$$
\begin{aligned}
& \text { 正 }
\end{aligned}
$$

[^0]
Outline

\checkmark Planar graphs of uniform polynomial growth >2.

Outline

\checkmark Planar graphs of uniform polynomial growth >2. \checkmark Their "structure".

Outline

\checkmark Planar graphs of uniform polynomial growth >2.
\checkmark Their "structure".
Up next...

Outline

\checkmark Planar graphs of uniform polynomial growth >2.
\checkmark Their "structure".
Up next...
\square Random walks.
\square Effective resistances.
\square Our construction(s).

Random Walks

Recurrence vs. Transience

An (infinite) graph G is recurrent if for (all) $v_{0} \in V(G)$, the random walk starting from v_{0} returns to v_{0} almost surely.

Recurrence vs. Transience

An (infinite) graph G is recurrent if for (all) $v_{0} \in V(G)$, the random walk starting from v_{0} returns to v_{0} almost surely. We say G is transient otherwise.

Recurrence vs. Transience

An (infinite) graph G is recurrent if for (all) $v_{0} \in V(G)$, the random walk starting from v_{0} returns to v_{0} almost surely. We say G is transient otherwise.
© Recurrence or transience of G does not depend on the choice of v_{0}.

An (infinite) graph G is recurrent if for (all) $v_{0} \in V(G)$, the random walk starting from v_{0} returns to v_{0} almost surely. We say G is transient otherwise.

๑ Recurrence or transience of G does not depend on the choice of v_{0}.

Recurrence vs. Transience

An (infinite) graph G is recurrent if for (all) $v_{0} \in V(G)$, the random walk starting from v_{0} returns to v_{0} almost surely. We say G is transient otherwise.
© Recurrence or transience of G does not depend on the choice of v_{0}.

Examples

Recurrence vs. Transience

An (infinite) graph G is recurrent if for (all) $v_{0} \in V(G)$, the random walk starting from v_{0} returns to v_{0} almost surely. We say G is transient otherwise.
© Recurrence or transience of G does not depend on the choice of v_{0}.

Examples

© \mathbb{Z} is recurrent [Pólya 1921].

Recurrence vs. Transience

An (infinite) graph G is recurrent if for (all) $v_{0} \in V(G)$, the random walk starting from v_{0} returns to v_{0} almost surely. We say G is transient otherwise.
© Recurrence or transience of G does not depend on the choice of v_{0}.

Examples

© \mathbb{Z} is recurrent [Pólya 1921].
© \mathbb{Z}^{2} is recurrent [Pólya 1921].

Recurrence vs. Transience

An (infinite) graph G is recurrent if for (all) $v_{0} \in V(G)$, the random walk starting from v_{0} returns to v_{0} almost surely. We say G is transient otherwise.
© Recurrence or transience of G does not depend on the choice of v_{0}.

Examples

© \mathbb{Z} is recurrent [Pólya 1921].
© \mathbb{Z}^{2} is recurrent [Pólya 1921].
© \mathbb{Z}^{3} is transient [Pólya 1921]!

Recurrence vs. Transience

An (infinite) graph G is recurrent if for (all) $v_{0} \in V(G)$, the random walk starting from v_{0} returns to v_{0} almost surely. We say G is transient otherwise.
© Recurrence or transience of G does not depend on the choice of v_{0}.

Examples

© \mathbb{Z} is recurrent [Pólya 1921].
© \mathbb{Z}^{2} is recurrent [Pólya 1921].
© \mathbb{Z}^{3} is transient [Pólya 1921]! Not planar

Recurrence vs. Transience

An (infinite) graph G is recurrent if for (all) $v_{0} \in V(G)$, the random walk starting from v_{0} returns to v_{0} almost surely. We say G is transient otherwise.
© Recurrence or transience of G does not depend on the choice of v_{0}.

Examples

© \mathbb{Z} is recurrent [Pólya 1921].
© \mathbb{Z}^{2} is recurrent [Pólya 1921].
© \mathbb{Z}^{3} is transient [Pólya 1921]! Not planar
© The (infinite) binary tree is transient.

Recurrence vs. Transience

An (infinite) graph G is recurrent if for (all) $v_{0} \in V(G)$, the random walk starting from v_{0} returns to v_{0} almost surely. We say G is transient otherwise.
© Recurrence or transience of G does not depend on the choice of v_{0}.

Examples

© \mathbb{Z} is recurrent [Pólya 1921].
© \mathbb{Z}^{2} is recurrent [Pólya 1921].
© \mathbb{Z}^{3} is transient [Pólya 1921]! Not planar
© The (infinite) binary tree is transient. Planar

Recurrence vs. Transience

An (infinite) graph G is recurrent if for (all) $v_{0} \in V(G)$, the random walk starting from v_{0} returns to v_{0} almost surely. We say G is transient otherwise.
© Recurrence or transience of G does not depend on the choice of v_{0}.

Examples

© \mathbb{Z} is recurrent [Pólya 1921].
© \mathbb{Z}^{2} is recurrent [Pólya 1921].
© \mathbb{Z}^{3} is transient [Pólya 1921]! Not planar
© The (infinite) binary tree is transient. Planar but has exponential growth.

Recurrence vs. Transience

An (infinite) graph G is recurrent if for (all) $v_{0} \in V(G)$, the random walk starting from v_{0} returns to v_{0} almost surely. We say G is transient otherwise.
© Recurrence or transience of G does not depend on the choice of v_{0}.

Examples

© \mathbb{Z} is recurrent [Pólya 1921].
© \mathbb{Z}^{2} is recurrent [Pólya 1921].
© \mathbb{Z}^{3} is transient [Pólya 1921]! Not planar but has polynomial growth.
© The (infinite) binary tree is transient. Planar but has exponential growth.

Recurrence vs. Transience

An (infinite) graph G is recurrent if for (all) $v_{0} \in V(G)$, the random walk starting from v_{0} returns to v_{0} almost surely. We say G is transient otherwise.
© Recurrence or transience of G does not depend on the choice of v_{0}.

Examples

© \mathbb{Z} is recurrent [Pólya 1921].
© \mathbb{Z}^{2} is recurrent [Pólya 1921].
© \mathbb{Z}^{3} is transient [Pólya 1921]! Not planar but has polynomial growth.
© The (infinite) binary tree is transient. Planar but has exponential growth.
© Distributional limits of random rooted finite planar graphs are almost surely recurrent when the degree of the root has an exponential tail [Benjamini - Schramm '01, Gurel Gurevich - Nachmias '12].

Recurrence vs. Transience

An (infinite) graph G is recurrent if for (all) $v_{0} \in V(G)$, the random walk starting from v_{0} returns to v_{0} almost surely. We say G is transient otherwise.
© Recurrence or transience of G does not depend on the choice of v_{0}.

Examples

© \mathbb{Z} is recurrent [Pólya 1921].
© \mathbb{Z}^{2} is recurrent [Pólya 1921].
© \mathbb{Z}^{3} is transient [Pólya 1921]! Not planar but has polynomial growth.
© The (infinite) binary tree is transient. Planar but has exponential growth.
© Distributional limits of random rooted finite planar graphs are almost surely recurrent when the degree of the root has an exponential tail [Benjamini - Schramm '01, Gurel Gurevich - Nachmias '12].

- This includes the Benjamini - Schramm constructions and the UIPT.

Conjecture 1 [Benjamini '10]

Planar graphs with uniform polynomial growth are all recurrent.

Conjecture 1 [Benjamini '10]

Planar graphs with uniform polynomial growth are all recurrent.
© Easy to show that it holds for all graphs of growth $O\left(R^{2}\right)$.

Conjecture 1 [Benjamini '10]

Planar graphs with uniform polynomial growth are all recurrent.
© Easy to show that it holds for all graphs of growth $O\left(R^{2}\right)$.
© Further conjectured to be true for doubling planar graphs.

Effective Resistance

Given $G=(V, E)$ and $u, v \in V, R_{\text {eff }}(u, v)$ is the energy required to send a unit
electrical flow from from u to v, assuming that every edge in G is a unit resistor.

Effective Resistance

Given $G=(V, E)$ and $u, v \in V, R_{\text {eff }}(u, v)$ is the energy required to send a unit electrical flow from from u to v, assuming that every edge in G is a unit resistor.

Effective Resistance

Given $G=(V, E)$ and $u, v \in V, R_{\text {eff }}(u, v)$ is the energy required to send a unit electrical flow from from u to v, assuming that every edge in G is a unit resistor.

Effective Resistance

Given $G=(V, E)$ and $u, v \in V, R_{\text {eff }}(u, v)$ is the energy required to send a unit electrical flow from from u to v, assuming that every edge in G is a unit resistor.

Effective Resistance

Given $G=(V, E)$ and $u, v \in V, R_{\text {eff }}(u, v)$ is the energy required to send a unit electrical flow from from u to v, assuming that every edge in G is a unit resistor.

Effective Resistance

Given $G=(V, E)$ and $u, v \in V, R_{\text {eff }}(u, v)$ is the energy required to send a unit electrical flow from from u to v, assuming that every edge in G is a unit resistor.

Effective Resistance \leftrightarrow Recurrence

Given $G=(V, E)$ and $u, v \in V, R_{\text {eff }}(u, v)$ is the energy required to send a unit
electrical flow from from u to v, assuming that every edge in G is a unit resistor.

Effective Resistance \leftrightarrow Recurrence

Given $G=(V, E)$ and $u, v \in V, R_{\text {eff }}(u, v)$ is the energy required to send a unit electrical flow from from u to v, assuming that every edge in G is a unit resistor.

Theorem [Doyle - Snell '84]

$G=(V, E)$ is recurrent if and only if $R_{\text {eff }}(v, \infty)=\infty$ for $v \in V$. Where

$$
R_{\mathrm{eff}}(v, \infty)=\lim _{R \rightarrow \infty} R_{\mathrm{eff}}(v, V \backslash B(v, R)) .
$$

How to Bound the Effective Resistance?

Theorem [Nash-Williams '59]

$$
R_{\mathrm{eff}}(u, v) \gtrsim \frac{1}{\left|S_{1}\right|}+\frac{1}{\left|S_{2}\right|}+\cdots+\frac{1}{\left|S_{n}\right|}
$$

How to Bound the Effective Resistance?

Theorem [Nash-Williams '59]

$$
R_{\mathrm{eff}}(u, v) \gtrsim \frac{1}{\left|S_{1}\right|}+\frac{1}{\left|S_{2}\right|}+\cdots+\frac{1}{\left|S_{n}\right|}
$$

How to Bound the Effective Resistance?

Theorem [Nash-Williams '59]

$$
R_{\text {eff }}(u, v) \gtrsim \frac{1}{\left|S_{1}\right|}+\frac{1}{\left|S_{2}\right|}+\cdots+\frac{1}{\left|S_{n}\right|}
$$

Theorem [Benjamini - Papasoglu '10]

Let $G=(V, E)$ be a planar graph with uniform polynomial growth. For all $v \in V, R \geq 1$, there is an $O(R)$-sized separator between $B(v, R)$ and $V \backslash B(v, 2 R)$.

How to Bound the Effective Resistance?

Theorem [Nash-Williams '59]

$$
R_{\mathrm{eff}}(u, v) \gtrsim \frac{1}{\left|S_{1}\right|}+\frac{1}{\left|S_{2}\right|}+\cdots+\frac{1}{\left|S_{n}\right|}
$$

Theorem [Benjamini - Papasoglu '10]

Let $G=(V, E)$ be a planar graph with uniform polynomial growth. For all $v \in V, R \geq 1$, there is an $O(R)$-sized separator between $B(v, R)$ and $V \backslash B(v, 2 R)$.

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots
$$

How to Bound the Effective Resistance?

Theorem [Nash-Williams '59]

$$
R_{\mathrm{eff}}(u, v) \gtrsim \frac{1}{\left|S_{1}\right|}+\frac{1}{\left|S_{2}\right|}+\cdots+\frac{1}{\left|S_{n}\right|}
$$

Theorem [Benjamini - Papasoglu '10]

Let $G=(V, E)$ be a planar graph with uniform polynomial growth. For all $v \in V, R \geq 1$, there is an $O(R)$-sized separator between $B(v, R)$ and $V \backslash B(v, 2 R)$.

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots<\infty
$$

How to Bound the Effective Resistance?

Theorem [Nash-Williams '59]

$$
R_{\mathrm{eff}}(u, v) \gtrsim \frac{1}{\left|S_{1}\right|}+\frac{1}{\left|S_{2}\right|}+\cdots+\frac{1}{\left|S_{n}\right|}
$$

Theorem [Benjamini - Papasoglu '10]

Let $G=(V, E)$ be a planar graph with uniform polynomial growth. For all $v \in V, R \geq 1$, there is an $O(R)$-sized separator between $B(v, R)$ and $V \backslash B(v, 2 R)$.

$$
\begin{gathered}
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots<\infty \\
2
\end{gathered}
$$

Linear-sized Separators in \mathbb{Z}^{2}

$$
R_{\mathrm{eff}}(v, \infty) \gtrsim \frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots
$$

Linear-sized Separators in \mathbb{Z}^{2}

$$
\begin{aligned}
R_{\mathrm{eff}}(v, \infty) & \gtrsim \frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots \\
& =\infty
\end{aligned}
$$

Linear-sized Separators in \mathbb{Z}^{2}

Linear-sized Separators in \mathbb{Z}^{2}

Linear-sized Separators in \mathbb{Z}^{2}

$$
R_{\mathrm{eff}}(v, \infty) \geq \sum_{k=1}^{\infty} R_{\mathrm{eff}}\left(B\left(v, 2^{k}\right), V \backslash B\left(v, 2^{k+1}\right)\right)
$$

$$
R_{\mathrm{eff}}(v, \infty) \geq \sum_{k=1}^{\infty} R_{\mathrm{eff}}\left(B\left(v, 2^{k}\right), V \backslash B\left(v, 2^{k+1}\right)\right)
$$

Conjecture 2 [Lee '17]

For any planar graph $G=(V, E)$ with uniform polynomial growth we have

$$
R_{\mathrm{eff}}(B(v, R), V \backslash B(v, 10 R)) \gtrsim 1 .
$$

Conjecture 2 [Lee '17]

For any planar graph $G=(V, E)$ with uniform polynomial growth we have

$$
R_{\mathrm{eff}}(B(v, R), V \backslash B(v, 10 R)) \gtrsim 1 .
$$

© Know: $\gtrsim 1 / R$ [Benjamini - Papasoglu '10].

Conjecture 2 [Lee '17]

For any planar graph $G=(V, E)$ with uniform polynomial growth we have

$$
R_{\mathrm{eff}}(B(v, R), V \backslash B(v, 10 R)) \gtrsim 1 .
$$

© Know: $\gtrsim 1 / R$ [Benjamini - Papasoglu '10].

Cannon's Conjecture [94]

Let Γ be a Gromov hyperbolic group whose visual boundary $\partial_{\infty} \Gamma$ is homeomorphic to \mathbb{S}^{2}. Then $\partial_{\infty} \Gamma$ is quasisymmetric to \mathbb{S}^{2}.

Conjecture 2 [Lee '17]

For any planar graph $G=(V, E)$ with uniform polynomial growth we have

$$
R_{\mathrm{eff}}(B(v, R), V \backslash B(v, 10 R)) \gtrsim 1 .
$$

© Know: $\gtrsim 1 / R$ [Benjamini - Papasoglu '10].

Cannon's Conjecture ['94]

Let Γ be a Gromov hyperbolic group whose visual boundary $\partial_{\infty} \Gamma$ is homeomorphic to \mathbb{S}^{2}. Then $\partial_{\infty} \Gamma$ is quasisymmetric to \mathbb{S}^{2}.

Cannon's Conjecture

Source: Cannon - Floyd - Parry 'o1

Conjecture 2 [Lee '17]

For any planar graph $G=(V, E)$ with uniform polynomial growth we have

$$
R_{\mathrm{eff}}(B(v, R), V \backslash B(v, 10 R)) \gtrsim 1 .
$$

© Know: $\gtrsim 1 / R$ [Benjamini - Papasoglu '10].

Cannon's Conjecture [94]

Let Γ be a Gromov hyperbolic group whose visual boundary $\partial_{\infty} \Gamma$ is homeomorphic to \mathbb{S}^{2}. Then $\partial_{\infty} \Gamma$ is quasisymmetric to \mathbb{S}^{2}.

Conjecture 2 [Lee '17]

For any planar graph $G=(V, E)$ with uniform polynomial growth we have

$$
R_{\mathrm{eff}}(B(v, R), V \backslash B(v, 10 R)) \gtrsim 1 .
$$

© Know: $\gtrsim 1 / R$ [Benjamini - Papasoglu '10].

Conjecture 2 [Lee '17]

For any planar graph $G=(V, E)$ with uniform polynomial growth we have

$$
R_{\text {eff }}(B(v, R), V \backslash B(v, 10 R)) \gtrsim 1 .
$$

© Know: $\gtrsim 1 / R$ [Benjamini - Papasoglu '10].

Conjecture 2 [Lee '17]

For any planar graph $G=(V, E)$ with uniform polynomial growth we have

$$
R_{\mathrm{eff}}(B(v, R), V \backslash B(v, 10 R)) \gtrsim 1 .
$$

© Know: $\gtrsim 1 / R$ [Benjamini - Papasoglu '10].

Theorem [E - Lee '21]

For $\alpha, \epsilon>0$, there is a unimodular random planar graph $G=(V, E)$ of almost sure uniform growth R^{α} that further almost surely satisfies

$$
R_{\mathrm{eff}}(B(v, R), V \backslash B(v, 10 R)) \lesssim_{\epsilon} 1 / R^{1-\epsilon} .
$$

Conjecture 1 [Benjamini '10]

Planar graphs with uniform polynomial growth are all recurrent.
© Easy to show that it holds for all graphs of growth $O\left(R^{2}\right)$.
© Further conjectured to be true for doubling planar graphs.

Conjecture 1 [Benjamini '10]

Planar graphs with uniform polynomial growth are all recurrent.
© Easy to show that it holds for all graphs of growth $O\left(R^{2}\right)$.
© Further conjectured to be true for doubling planar graphs.

Conjecture 1 [Benjamini '10]

Planar graphs with uniform polynomial growth are all recurrent.
© Easy to show that it holds for all graphs of growth $O\left(R^{2}\right)$.
© Further conjectured to be true for doubling planar graphs.

Theorem [E - Lee '21]
For all $\alpha>2$, there is a transient planar graph of uniform growth R^{α}.

The Construction(s)

Tilings of $[0,1]^{2}$

Tilings of $[0,1]^{2}$

Tiling Product

Tiling Product

© Obesrvation: $A \circ(B \circ C)=(A \circ B) \circ C$.

$\left\{\mathbf{G}^{n}: n \geq 1\right\}$

$\left\{\mathbf{G}^{n}: n \geq 1\right\}$

$G^{3}=$

-							
							-
							$\xrightarrow{+}$

$\left\{\mathbf{G}^{n}: n \geq 1\right\}$

$\mathrm{G}^{3}=$

$$
\longleftarrow 3^{3} \longrightarrow
$$

$\left\{\mathbf{H}^{n}: n \geq 1\right\}$

Lemma: $\left|B_{\mathbf{H}^{n}}(v, R)\right| \asymp R^{\log _{3} 12}$

Lemma: $\left|B_{\mathbf{H}^{n}}(v, R)\right| \asymp R^{\log _{3} 12}$

๑ $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$

Lemma: $\left|B_{\mathbf{H}^{n}}(v, R)\right| \asymp R^{\log _{3} 12}$

๑ $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$

- $\left|\mathbf{H}^{n}\right|=12^{n}$

Lemma: $\left|B_{\mathbf{H}^{n}}(v, R)\right| \asymp R^{\log _{3} 12}$

๑ $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$

- $\left|\mathbf{H}^{n}\right|=12^{n}$
- $3^{n} \leq \operatorname{diam}\left(\mathbf{H}^{n}\right) \leq 3^{n+1}$

Lemma: $\left|B_{\mathrm{H}^{n}}(v, R)\right| \asymp R^{\log _{3} 12}$

© $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$

- $\left|\mathbf{H}^{n}\right|=12^{n}$
- $3^{n} \leq \operatorname{diam}\left(\mathbf{H}^{n}\right) \leq 3^{n+1}$

Lemma: $\left|B_{\mathbf{H}^{n}}(v, R)\right| \asymp R^{\log _{3} 12}$

๑ $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$

- $\left|\mathbf{H}^{n}\right|=12^{n}$
- $3^{n} \leq \operatorname{diam}\left(\mathbf{H}^{n}\right) \leq 3^{n+1}$

Lemma: $\left|B_{\mathbf{H}^{n}}(v, R)\right| \asymp R^{\log _{3} 12}$

๑ $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$

- $\left|\mathbf{H}^{n}\right|=12^{n}$
- $3^{n} \leq \operatorname{diam}\left(\mathbf{H}^{n}\right) \leq 3^{n+1}$

Lemma: $\left|B_{\mathbf{H}^{n}}(v, R)\right| \asymp R^{\log _{3} 12}$

๑ $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$

- $\left|\mathbf{H}^{n}\right|=12^{n}$
- $3^{n} \leq \operatorname{diam}\left(\mathbf{H}^{n}\right) \leq 3^{n+1}$

Lemma: $\left|B_{\mathbf{H}^{n}}(v, R)\right| \asymp R^{\log _{3} 12}$

๑ $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$

- $\left|\mathbf{H}^{n}\right|=12^{n}$
- $3^{n} \leq \operatorname{diam}\left(\mathbf{H}^{n}\right) \leq 3^{n+1}$

Lemma: $\left|B_{\mathrm{H}^{n}}(v, R)\right| \asymp R^{\log _{3} 12}$

๑ $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$

- $\left|\mathbf{H}^{n}\right|=12^{n}$
- $3^{n} \leq \operatorname{diam}\left(\mathbf{H}^{n}\right) \leq 3^{n+1}$
$\odot B_{\mathbf{H}^{n}}\left(v, 3^{k}\right) \approx \mathbf{H}^{k}$

Lemma: $\left|B_{\mathrm{H}^{n}}(v, R)\right| \asymp R^{\log _{3} 12}$

H^{k}	H^{k}	H^{k}	H^{k}	$\frac{H^{K}}{H^{k}}$	H^{k}	H^{k}	H^{k}	H^{k}
	H^{k}		H^{k}	$\frac{H^{\prime \prime}}{H^{k}}$	H^{k}		H^{k}	
H^{k}	H^{k}	H^{k}	H^{k}	$\frac{\mathrm{H}^{\prime}}{H^{\prime}}$	H^{k}	H^{k}	H^{k}	H^{k}
	H^{k}		H^{k}	$\frac{H^{\prime \prime}}{H^{\prime}}$	H^{k}		H^{k}	
H^{k}	H^{k}	H^{k}	H^{k}	${ }^{\text {H/ }}$	H^{k}	H^{k}	H^{k}	H^{k}
	H^{k}		H^{k}	H^{k}	H^{k}		H^{k}	
H^{k}	H^{k}	H^{k}	H^{k}	H	H^{k}	H^{k}	H^{k}	H^{k}
	H^{k}		H^{k}	${ }^{+}$	H^{k}		H^{k}	
H^{k}	H^{k}	H^{k}	H^{k}	$\frac{H^{k}}{H^{k}}$	H^{k}	H^{k}	H^{k}	H^{k}
	H^{k}		H^{k}	$\frac{H^{\prime}}{H^{k}}$	H^{k}		H^{k}	
H^{k}	H^{k}	H^{k}	H^{k}	$\frac{H^{\prime}}{H^{k}}$	H^{k}	H^{k}	H^{k}	H^{k}
	H^{k}		H^{k}	${ }^{\text {H }}$	H^{k}		H^{k}	
H^{k}	H^{k}	H^{k}	H^{k}	$\frac{H^{k}}{H^{k}}$	H^{k}	H^{k}	H^{k}	H^{k}
	H^{k}		H^{k}	$\frac{H^{\prime}}{H^{\prime}}$	H^{k}		H^{k}	
H^{k}	H^{k}	H^{k}	H^{k}	$\frac{H^{k}}{H^{\kappa}}$	H^{k}	H^{k}	H^{k}	H^{k}
	H^{k}		H^{k}	$\frac{H^{\prime}}{H^{\prime}}$	H^{k}		H^{k}	
H^{k}	H^{k}	H^{k}	H^{k}	$\frac{\mathrm{H}^{\kappa}}{\mathrm{H}^{k}}$	H^{k}	H^{k}	H^{k}	H^{k}
	H^{k}		H^{k}	$\frac{H^{k}}{H^{k}}$	H^{k}		H^{k}	

© $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$

- $\left|\mathbf{H}^{n}\right|=12^{n}$
- $3^{n} \leq \operatorname{diam}\left(\mathbf{H}^{n}\right) \leq 3^{n+1}$
(-) $B_{\mathbf{H}^{n}}\left(v, 3^{k}\right) \approx \mathbf{H}^{k}$
- $\mathbf{H}^{n}=\mathbf{H}^{n-k} \circ \mathbf{H}^{k}$

๑ $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$

- $\left|\mathbf{H}^{n}\right|=12^{n}$
- $3^{n} \leq \operatorname{diam}\left(\mathbf{H}^{n}\right) \leq 3^{n+1}$
© $B_{\mathbf{H}^{n}}\left(v, 3^{k}\right) \approx \mathbf{H}^{k}$
$\circ \mathbf{H}^{n}=\mathbf{H}^{n-k} \circ \mathbf{H}^{k}$

๑ $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$

- $\left|\mathbf{H}^{n}\right|=12^{n}$
- $3^{n} \leq \operatorname{diam}\left(\mathbf{H}^{n}\right) \leq 3^{n+1}$
© $B_{\mathbf{H}^{n}}\left(v, 3^{k}\right) \approx \mathbf{H}^{k}$
$\circ \mathbf{H}^{n}=\mathbf{H}^{n-k} \circ \mathbf{H}^{k}$

๑ $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$

- $\left|\mathbf{H}^{n}\right|=12^{n}$
- $3^{n} \leq \operatorname{diam}\left(\mathbf{H}^{n}\right) \leq 3^{n+1}$
© $B_{\mathbf{H}^{n}}\left(v, 3^{k}\right) \approx \mathbf{H}^{k}$
$\circ \mathbf{H}^{n}=\mathbf{H}^{n-k} \circ \mathbf{H}^{k}$

๑ $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$

- $\left|\mathbf{H}^{n}\right|=12^{n}$
- $3^{n} \leq \operatorname{diam}\left(\mathbf{H}^{n}\right) \leq 3^{n+1}$
© $B_{\mathbf{H}^{n}}\left(v, 3^{k}\right) \approx \mathbf{H}^{k}$
$\circ \mathbf{H}^{n}=\mathbf{H}^{n-k} \circ \mathbf{H}^{k}$

๑ $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$

- $\left|\mathbf{H}^{n}\right|=12^{n}$
- $3^{n} \leq \operatorname{diam}\left(\mathbf{H}^{n}\right) \leq 3^{n+1}$
© $B_{\mathbf{H}^{n}}\left(v, 3^{k}\right) \approx \mathbf{H}^{k}$
$\circ \mathbf{H}^{n}=\mathbf{H}^{n-k} \circ \mathbf{H}^{k}$

๑ $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$

- $\left|\mathbf{H}^{n}\right|=12^{n}$
- $3^{n} \leq \operatorname{diam}\left(\mathbf{H}^{n}\right) \leq 3^{n+1}$
© $B_{\mathbf{H}^{n}}\left(v, 3^{k}\right) \approx \mathbf{H}^{k}$
$\circ \mathbf{H}^{n}=\mathbf{H}^{n-k} \circ \mathbf{H}^{k}$

© $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$
- $\left|\mathbf{H}^{n}\right|=12^{n}$
- $3^{n} \leq \operatorname{diam}\left(\mathbf{H}^{n}\right) \leq 3^{n+1}$
- $B_{\mathbf{H}^{n}}\left(v, 3^{k}\right) \approx \mathbf{H}^{k}$
$\circ \mathbf{H}^{n}=\mathbf{H}^{n-k} \circ \mathbf{H}^{k}$

๑ $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$

- $\left|\mathbf{H}^{n}\right|=12^{n}$
- $3^{n} \leq \operatorname{diam}\left(\mathbf{H}^{n}\right) \leq 3^{n+1}$
© $B_{\mathbf{H}^{n}}\left(v, 3^{k}\right) \approx \mathbf{H}^{k}$
$\circ \mathbf{H}^{n}=\mathbf{H}^{n-k} \circ \mathbf{H}^{k}$

© $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$
- $\left|\mathbf{H}^{n}\right|=12^{n}$
- $3^{n} \leq \operatorname{diam}\left(\mathbf{H}^{n}\right) \leq 3^{n+1}$
© $B_{\mathbf{H}^{n}}\left(v, 3^{k}\right) \approx \mathbf{H}^{k}$
$\circ \mathbf{H}^{n}=\mathbf{H}^{n-k} \circ \mathbf{H}^{k}$

๑ $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$

- $\left|\mathbf{H}^{n}\right|=12^{n}$
- $3^{n} \leq \operatorname{diam}\left(\mathbf{H}^{n}\right) \leq 3^{n+1}$

๑ $B_{\mathbf{H}^{n}}\left(v, 3^{k}\right) \approx \mathbf{H}^{k}$
$\circ \mathbf{H}^{n}=\mathbf{H}^{n-k} \circ \mathbf{H}^{k}$
$\circ \max _{S} \operatorname{deg}_{\mathbf{H}^{n}}(S) \leq 6$

Lemma: $\left|B_{\mathrm{H}^{n}}(v, R)\right| \asymp R^{\log _{3} 12}$

© $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$

- $\left|\mathbf{H}^{n}\right|=12^{n}$
- $3^{n} \leq \operatorname{diam}\left(\mathbf{H}^{n}\right) \leq 3^{n+1}$
© $B_{\mathbf{H}^{n}}\left(v, 3^{k}\right) \approx \mathbf{H}^{k}$
- $\mathbf{H}^{n}=\mathbf{H}^{n-k} \circ \mathbf{H}^{k}$
$\circ \max _{S} \operatorname{deg}_{\mathbf{H}^{n}}(S) \leq 6$

Lemma: $\left|B_{\mathbf{H}^{n}}(v, R)\right| \asymp R^{\log _{3} 12}$

๑ $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$

- $\left|\mathbf{H}^{n}\right|=12^{n}$
- $3^{n} \leq \operatorname{diam}\left(\mathbf{H}^{n}\right) \leq 3^{n+1}$
© $B_{\mathbf{H}^{n}}\left(v, 3^{k}\right) \approx \mathbf{H}^{k}$
$\circ \mathbf{H}^{n}=\mathbf{H}^{n-k} \circ \mathbf{H}^{k}$
- $\max _{S} \operatorname{deg}_{\mathbf{H}^{n}}(S) \leq 6$

๑ $\left|B_{\mathbf{H}^{n}}\left(v, 3^{n+1}\right)\right|=12^{n}$

- $\left|\mathbf{H}^{n}\right|=12^{n}$
- $3^{n} \leq \operatorname{diam}\left(\mathbf{H}^{n}\right) \leq 3^{n+1}$

๑ $B_{\mathbf{H}^{n}}\left(v, 3^{k}\right) \approx \mathbf{H}^{k}$
$\circ \mathbf{H}^{n}=\mathbf{H}^{n-k} \circ \mathbf{H}^{k}$

- $\max _{S} \operatorname{deg}_{\mathbf{H}^{n}}(S) \leq 6$

Let $\rho(\mathbf{S})$ denote the energy of the uniform flow from the tiles on the left of \boldsymbol{S} to the tiles on its right.

Let $\rho(\mathbf{S})$ denote the energy of the uniform flow from the tiles on the left of \mathbf{S} to the tiles on its right. Then we claim for $u \in \mathbf{T}_{\infty}$

Let $\rho(\mathbf{S})$ denote the energy of the uniform flow from the tiles on the left of \mathbf{S} to the tiles on its right. Then we claim for $u \in \mathbf{T}_{\infty}$

$$
R_{\mathrm{eff}}(u \leftrightarrow \infty) \lesssim \sum_{i=1}^{\infty} \rho\left(\mathbf{H}^{i}\right)
$$

Let $\rho(\mathbf{S})$ denote the energy of the uniform flow from the tiles on the left of \mathbf{S} to the tiles on its right. Then we claim for $u \in \mathbf{T}_{\infty}$

$$
\begin{aligned}
R_{\mathrm{eff}}(u \leftrightarrow \infty) & \lesssim \sum_{i=1}^{\infty} \rho\left(\mathbf{H}^{i}\right) \\
& \lesssim \sum_{i=1}^{\infty}(5 / 6)^{i}
\end{aligned}
$$

Let $\rho(\mathbf{S})$ denote the energy of the uniform flow from the tiles on the left of \mathbf{S} to the tiles on its right. Then we claim for $u \in \mathbf{T}_{\infty}$

$$
\begin{aligned}
R_{\mathrm{eff}}(u \leftrightarrow \infty) & \lesssim \sum_{i=1}^{\infty} \rho\left(\mathbf{H}^{i}\right) \\
& \lesssim \sum_{i=1}^{\infty}(5 / 6)^{i} \\
& <\infty
\end{aligned}
$$

Let $\rho(\mathbf{S})$ denote the energy of the uniform flow from the tiles on the left of \mathbf{S} to the tiles on its right. Then we claim for $u \in \mathbf{T}_{\infty}$

$$
\begin{aligned}
R_{\mathrm{eff}}(u \leftrightarrow \infty) & \lesssim \sum_{i=1}^{\infty} \rho\left(\mathbf{H}^{i}\right) \\
& \lesssim \sum_{i=1}^{\infty}(5 / 6)^{i} \\
& <\infty .
\end{aligned}
$$

Let $\rho(\mathbf{S})$ denote the energy of the uniform flow from the tiles on the left of \mathbf{S} to the tiles on its right. Then we claim for $u \in \mathbf{T}_{\infty}$

$$
\begin{aligned}
R_{\mathrm{eff}}(u \leftrightarrow \infty) & \lesssim \sum_{i=1}^{\infty} \rho\left(\mathbf{H}^{i}\right) \\
& \lesssim \sum_{i=1}^{\infty}(5 / 6)^{i} \\
& <\infty .
\end{aligned}
$$

Transience of T_{∞}

Let $\rho(\mathbf{S})$ denote the energy of the uniform flow from the tiles on the left of \mathbf{S} to the tiles on its right. Then we claim for $u \in \mathbf{T}_{\infty}$

$$
\begin{aligned}
R_{\mathrm{eff}}(u \leftrightarrow \infty) & \lesssim \sum_{i=1}^{\infty} \rho\left(\mathbf{H}^{i}\right) \\
& \lesssim \sum_{i=1}^{\infty}(5 / 6)^{i} \\
& <\infty .
\end{aligned}
$$

Transience of T_{∞}

$$
\frac{1}{3}\left(1+\frac{1}{2}+1\right)=5 / 6
$$

Let $\rho(\mathbf{S})$ denote the energy of the uniform flow from the tiles on the left of \mathbf{S} to the tiles on its right. Then we claim for $u \in \mathbf{T}_{\infty}$

$$
\begin{aligned}
R_{\mathrm{eff}}(u \leftrightarrow \infty) & \lesssim \sum_{i=1}^{\infty} \rho\left(\mathbf{H}^{i}\right) \\
& \lesssim \sum_{i=1}^{\infty}(5 / 6)^{i} \\
& <\infty .
\end{aligned}
$$

Generalizations

Generalizations

Generalizations

Generalizations

Generalizations

The Speed of the Random Walk

Theorem [Lee '17]

Suppose (G, ρ) is a unimodular random planar graph and G almost surely has uniform polynomial growth of degree d. Then:

$$
\mathbb{E}\left[d_{G}\left(X_{0}, X_{t}\right) \mid X_{0}=\rho\right] \lesssim t^{1 / \max (2, d-1)} .
$$

The Speed of the Random Walk

Theorem [Lee '17]

Suppose (G, ρ) is a unimodular random planar graph and G almost surely has uniform polynomial growth of degree d. Then:

$$
\mathbb{E}\left[d_{G}\left(X_{0}, X_{t}\right) \mid X_{0}=\rho\right] \lesssim t^{1 / \max (2, d-1)} .
$$

Theorem [E - Lee '21]

For $d \geq 2$ and $\epsilon>0$, there is a unimodular random planar graph (G, ρ) that almost surely has uniform polynomial growth of degree d and

$$
\mathbb{E}\left[d_{G}\left(X_{0}, X_{t}\right) \mid X_{0}=\rho\right] \geq_{\epsilon} t^{1 /(\max (2, d-1)+\epsilon)}
$$

For all $\alpha>2$, we can construct a transient planar graph of uniform growth R^{α}

Wrap-up

For all $\alpha>2$, we can construct a transient planar graph of uniform growth R^{α}, and furthermore a unimodular planar graph of such growth in which

Wrap-up

For all $\alpha>2$, we can construct a transient planar graph of uniform growth R^{α}, and furthermore a unimodular planar graph of such growth in which

- the complements of all balls are connected,

Wrap-up

For all $\alpha>2$, we can construct a transient planar graph of uniform growth R^{α}, and furthermore a unimodular planar graph of such growth in which
© the complements of all balls are connected,
© the effective resistance across annuli is $1 / R^{1-\epsilon}$,

Wrap-up

For all $\alpha>2$, we can construct a transient planar graph of uniform growth R^{α}, and furthermore a unimodular planar graph of such growth in which
© the complements of all balls are connected,
© the effective resistance across annuli is $1 / R^{1-\epsilon}$,
© and the speed of the random walk is $t^{1 /(\max (2, d-1)+\varepsilon)}$.

Open Problems
Openfoben $+2$

都

 路

Open Problems

- Cannon's Conjecture.

Open Problems

- Cannon's Conjecture.
© Can we get rid of the ϵ in the effective resistance / random walk speed bound?

Open Problems

- Cannon's Conjecture.
© Can we get rid of the ϵ in the effective resistance / random walk speed bound?

Open Problems

© Cannon's Conjecture.
© Can we get rid of the ϵ in the effective resistance / random walk speed bound?

- In particular is there a planar graph of uniform polynomial growth $\alpha>2$ in which the random walk is diffusive?

Open Problems

© Cannon's Conjecture.
© Can we get rid of the ϵ in the effective resistance / random walk speed bound?

- In particular is there a planar graph of uniform polynomial growth $\alpha>2$ in which the random walk is diffusive?
© Other applications?

Open Problems

© Cannon's Conjecture.
© Can we get rid of the ϵ in the effective resistance / random walk speed bound?

- In particular is there a planar graph of uniform polynomial growth $\alpha>2$ in which the random walk is diffusive?
© Other applications?
- Sphere-packable generalizations.

Questions?

Thank you!

[^0]:

