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For a graph G, v € V(G) and R > 0 we define
Bg(v,R) ={u:dc(v,u) <R},

where dg(u,v) is the shortest path distance between u and v.

©® We are interested in how |B(v, R)| grows as a function of R.
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Volume Growth in the Binary Tree

|B(v,R)| =281 -1
= O(28).
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Uniform Volume Growth

We say a graph G has uniform volume growth f(R) if forall v e V(G) and R > 0 we
have
cf(R)<[B(v,R)[<Cf(R)

for some constants 0 < ¢ < C.

© The d-dimensional grid has R? uniform growth, which is polynomial in R.
© The infinite binary tree has 28 uniform growth, which is exponential in R.

© Not all graphs have uniform volume growth.
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Planar Graphs of Uniform Polynomial Growth > 2

Theorem [Babai '97]

If G is a vertex-transitive planar graph of uniform growth, then the growth is

either linear, quadratic, or exponential.

© It had been conjectured by Kleinberg and Tardos that the assumption on
vertex transitivity is not necessary.

Theorem [Benjamini - Schramm ’01]

For all a > 1, there exists an (infinite) planar graph of uniform growth R¢.
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The sequence of random rooted graphs (Q1, p1), (Q2, p2), - .., where p; is chosen

uniformly among the vertices of Q;, has a subsequential limit (Qc, p).
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Problem 1 [Benjamini - Papasoglu ’10]

Is there a planar graph of uniform polynomial growth a > 2 in-which-all
complements-of balls-are-conneeted? that doesn'’t look like the UIPT?

© The claim trivially holds for a = 2 as the complements of balls in Z are all
connected.

Theorem [E - Lee ’21]

For all a > 2, there exists a (unimodular) planar graph of uniform growth R® in
which the complements of all balls are connected.
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v Their “structure”.
Upnext...

O Random walks.
0O Effective resistances.
O Our construction(s).
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Recurrence vs. Transience

An (infinite) graph G is recurrent if for (all) vy € V(G), the random walk starting
from vy returns to vy almost surely. We say G is transient otherwise.

© Recurrence or transience of G does not depend on the choice of v.
© Z is recurrent [Pélya 1921].

© Z2is recurrent [Pdlya 1921].

@ Z3 is transient [Pélya 1921]! Not planar but has polynomial growth.

© The (infinite) binary tree is transient. Planar but has exponential growth.

© Distributional limits of random rooted finite planar graphs are almost surely
recurrent when the degree of the root has an exponential tail
[Benjamini - Schramm "01, Gurel Gurevich - Nachmias "12].

o This includes the Benjamini - Schramm constructions and the UIPT.
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Conjecture 1 [Benjamini "10]

Planar graphs with uniform polynomial growth are all recurrent.

© Easy to show that it holds for all graphs of growth O(R?).

© Further conjectured to be true for doubling planar graphs.
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Effective Resistance < Recurrence

Given G = (V,E) and u,v € V, Reg(u, v) is the energy required to send a unit
electrical flow from from u to v, assuming that every edge in G is a unit resistor.

Theorem [Doyle - Snell '84]

G = (V,E) is recurrent if and only if Reg(v, 00) = oo for v € V. Where

Reff(v, OO) = 1%1_1:1010 Reff ('U, V-~ B(Z),R)) °
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Theorem [Benjamini - Papasoglu '10]

Let G = (V, E) be a planar graph with uniform polynomial growth. For all
v € V,R > 1, there is an O(R)-sized separator between B(v,R) and V \ B(v,2R).
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Linear-sized Separators in Z2
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Conjecture 2 [Lee ’17]

For any planar graph G = (V, E) with uniform polynomial growth we have
Reg (B(v,R),V N~ B(v,10R)) > 1.

©® Know: 2 1/R [Benjamini - Papasoglu "10].

Theorem [E - Lee ’21]
For a, € > 0, there is a unimodular random planar graph G = (V, E) of almost sure
uniform growth R that further almost surely satisfies

Reg (B(v,R),V ~ B(v,10R)) Se 1/R'7€.
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Conjecture 1 [Benjamini ’10]

Planar graphs with uniform polynomial growth are all recurrent.

© Easy to show that it holds for all graphs of growth O(R?).

© Further conjectured to be true for doubling planar graphs.

Theorem [E - Lee ’21]

For all a > 2, there is a transient planar graph of uniform growth R¢.
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©® Obesrvation: Ao (BoC)=(AoB)oC.
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Transience of T

Let p(S) denote the energy of the

uniform flow from the tiles on the left

of S to the tiles on its right. Then we
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The Speed of the Random Walk

Theorem [Lee ’17]

Suppose (G, p) is a unimodular random planar graph and G almost surely has
uniform polynomial growth of degree d. Then:

E [dg(Xo, X;) | Xo = p]  t1/max@d-1),

Theorem [E - Lee "21]

For d > 2 and € > 0, there is a unimodular random planar graph (G, p) that
almost surely has uniform polynomial growth of degree d and

E [dg(Xo, Xt) | Xo = p] ze t1/(max2d-1)+e)
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For all & > 2, we can construct a transient planar graph of uniform growth R%, and
furthermore a unimodular planar graph of such growth in which

©® the complements of all balls are connected,
@ the effective resistance across annuli is 1/R'~¢,

© and the speed of the random walk is t/(max(2.d-1)+e),
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Open Problems

© Cannon’s Conjecture.

© Can we get rid of the € in the effective resistance / random walk speed
bound?

o In particular is there a planar graph of uniform polynomial growth a > 2 in
which the random walk is diffusive?

© Other applications?

o Sphere-packable generalizations.
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Thank you!
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